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Summary

During the current reporting period, January 1 to December 31, 1989, general problems

associated with on-board trajectory optimization, propulsion system cycle selection, and with the

synthesis of guidance laws were addressed for ascent to low-Earth-orbit of an air-breathing,

single-stage-to-orbit vehicle. This report follows a previous one entitled "Trajectory Optimization

and Guidance Law Development for National Aerospace Plane Applications" and dated December

1988. The work reported herein builds directly upon the analytical results presented in that

document. A good portion of this work focused on making improvements to the vehicle models

employed. The NASA "Generic Hypersonic Aerodynamic Model Example" and the "Langley

Accelerator" aerodynamic data sets were acquired and implemented. Work pertaining to the

development of purely analytic aerodynamic models also continued at a low level. A generic model

of a multi-mode propulsion system was developed that includes turbojet, ramjet, scramjet, and

rocket engine cycles. Provisions were made in the dynamic model for a component of thrust

normal to the flight path. Computational results, which characterize the nonlinear sensitivity of

scramjet performance to changes in vehicle angle of attack, were obtained and incorporated into the

engin e model. Additional trajectory constraints were also introduced. The constraints now treated

are: maximum dynamic pressure, maximum aerodynamic heating rate per unit area, angle of attack

and lift limits, and limits on acceleration both along and normal to the flight path.

The remainder of the research effort focused, for the most part, on required modifications to the

previously derived algorithm when the model complexity cited above was added. In particular,

analytic switching conditions were derived which, under appropriate assumptions, govern optimal

transition from one propulsion mode to another for two cases: the case in which engine cycle

operations can overlap, and the case in which engine cycle operations are mutually exclusive. The

resulting guidance algorithm was implemented in software and exercised extensively. It was found

that the approximations associated with the assumed time scale separation employed in this work

are reasonable except over the Mach range from roughly 5 to 8. This phenomenon is due to the

very large thrust capability of scramjets in this Mach regime when sized to meet the requirement for

ascent to orbit. Very little mass penalty is induced by the resulting inaccuracies in the trajectory

over this region because it is traversed rapidly. However, the reduced solution climb paths prove to

be unfeasible within this Mach range when subject to the full model dynamics and active trajectory

constraints. These difficulties were successfully overcome by accounting for flight path angle and

flight path angle rate in construction of the flight path over this Mach range. The resulting

algorithm provides the means for rapid near-optimal trajectory generation and propulsion cycle



selectionover the entire Mach range from take-off to orbit given a realistic nonlinear vehicle model

and all pertinent trajectory constraints.

The only significant problem area encountered to date relates to the lack of a general theory for

singularly perturbed systems that aresubject to state-variable inequality constraints. Such

constraints are common to a wide class of flight vehicles but have received little attention in the

literature when the dynamic system is singularly perturbed. A study was initiated in this area and it

was found that, when the reduced solution lies on a state-variable inequality constraint boundary,

the boundary layer trajectories are of finite time in the stretched time scale. The possibility of

costate discontinuites at the juncture between constrained and unconstrained arcs makes direct

application of existing theory difficult at best. A transformation technique was identified that

eliminates some of these difficulties, but at the cost of possibly increased system order and the

introduction of singular arcs. Much work remains to be done in this area.

Work on development of simple, efficient algorithms for prediction of vehicle aerodynamic and

propulsive performance have continued during the present phase of the program. Improvements in

modeling of the hypersonic lifting body module have eliminated previous discrepancies between

measured and predicted aerodynamic behavior. Several modes of data entry are now implemented

making assessment of a given vehicle configuration very simple. An interactive program mode has

been devised that makes possible direct and immediate assessment of configuration changes on

selected vehicle performance paramaters. The algorithms developed in this program are of potential

use in applications beyond those originally envisioned.

Four conference papers have now been published which discuss most of the results of this

research effort. A Ph.D. Dissertation that details the entire effort to date was published in

Decemeber of 1989. A full-length paper entitled "Rapid Near-Optimal Trajectory Generation for

Single-Stage-to-Orbit Airbreathing Vehicles" has been submitted for publication in the AIAA

Journal of Guidance, Control and Dynamics and a new paper is now being prepared for the 1990

AIAA GN&C Conference on the issue of state contraints in singularly perturbed systems.
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SECTION 1

Introduction

Emerging technology in many engineering fields, including hypersonic air-breathing

propulsion, computational fluid dynamics, and high temperature materials, may soon make

possible a vehicle configuration that has been the subject of study for over four decades I. This

vehicle concept is commonly referred to as an aerospace plane. Its development, in one version or

another, is being pursued by a number of industrialized nations. The current U.S. concept consists

of a single-stage vehicle propelled, for the most part, by airbreathing engines. Most notable among

the airbreathing cycles to be employed is that of the supersonic combustion ramjet or "scramjet."

This aircraft is to be fueled by liquid hydrogen and will take-off and land horizontally on

conventional runways. Operational objectives include hypersonic cruise in the upper atmosphere

for long durations and the ability to accelerate to orbital velocity. Potential missions for such a

vehicle include transportation to low-Earth-orbit, intercontinental passenger transportation, and a

wide range of defense missions. This research effort is focused upon the particular mission of

single-stage-to-orbit which promises, by the use of air-breathing hypersonic propulsion and

greatly reduced launch operations, an order of magnitude reduction in the cost of placing payloads

in low Earth orbit 2,3.

Even with the greatly improved fuel efficiency of airbreathing propulsion over current rocket

engine technology, the ability to attain orbit in a single-stage vehicle will be marginal at best n.

Trajectory optimization will play an important role in mission success for this reason. In fact,

because the airbreathing propulsion system characteristics are sensitive to vehicle attitude and

atmospheric conditions, precise trajectory control will be required. State-of-the-art launch vehicle

guidance technology is heavily reliant on pre-mission, ground-based trajectory

generation/optimization. In order to be cost effective, aerospace plane operations will have to

approach those of modem commercial airlines. Technology dependent upon pre-mission, ground-

based trajectory optimization is inadequate for this task; real-time, on-board trajectory optimization

will be required 5.

The state of the art in trajectory optimization for complex nonlinear systems consists of a

number of well developed numerical methods of solution. Unfortunately, these algorithms are

poorly suited for on-board, real-time implementation. They are, in general, computationally

intense, require an initial guess of the solution, and are lacking in global convergence

characteristics. While some success in designing a reliable algorithm to numerically solve a two



point boundaryvalueproblemin anon-boardcomputerhasbeenachievedfor orbit transfer*,the

diversemissionrequirementsandcomplexcontrolstructureof ageneralpurposeaerospaceplane

will likely requirethatstructuredmethodsfor orderreductionbeemployed.

Energy state approximationsand singular perturbation methodshave beensuccessfully

employedto derive near-analytictrajectoryoptimization algorithms in the past.Near-optimal

feedbackguidancelaws have alsobeenobtained.Thesemethodsalso contributeconsiderable

insight into the nature of the optimal profiles and their relation to vehicle aerodynamicand
propulsioncharacteristics.Early studiesweredevotedtofighteraircraftperformanceoptimization7-

9. However, many of the modeling approximationsemployed for analysis of subsonicand

supersonicaircraftoptimaltrajectoriesarenotvalid for avehiclewith hypersoniccruiseandorbital

capabilities.

This researchreport presentsananalysisof theproblemof fuel-optimal ascentto low-Earth-

orbit of anairbreathing,single-stage-to-orbitvehicle.SectionII presentstheproblemformulation.

A genericmulti-modepropulsionsystemis definedwhich incorporatesturbojet,ramjet,scramjet,
androcket engines.Inequality constraintson dynamicpressure,aerodynamicheatingrate, and
vehicleaccelerationarealsointroduced.In SectionIII analgorithm for generatingfuel-optimal

climb profiles is derivedemployinganenergystateapproximation.This algorithmresultsfrom

applicationof theminimumprincipleto a low orderdynamicmodelthatincludesgeneralfunctional
dependenceonangleof attackandanormalcomponentof thrust.Switchingconditionsarederived

which, underappropriateassumptions,governoptimal transitionfrom one propulsionmodeto

another.Theuseof bankangleto modulatethemagnitudeof thevertical componentof lift is also

investigated.A nonlineartransformationtechniqueis employedto deriveafeedbackcontrollerfor

tracking the computedtrajectory. Section IV provides an overview of the vehicles models

employed in this work. SectionV provides a presentationand discussionof representative
numericalresults,andSectionVI statesconclusionsdrawnfrom this work. Themainbody of the

report is followed by two appendices.Appendix A details an initial investigation into the

characteristicsof boundarylayer systemswhen the reducedsolution lies on a state-variable

inequalityconstraintboundary.AppendixB detailswork performedin analyticalvehiclemodel

development.
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SECTION 2

General Problem Formulation

Consider atmospheric flight of a point mass over a spherical non-rotating Earth. The equations

governing such flight can be reduced to a four state model as follows,

= VfFc - 13) (I)
m

rn = -f (r,E,n,o0 (2)

• V cos 7s + L} cosff I.t co_ +

= mV Vr 2 r
(3)

ei" = V sin_ (4)

The perturbation parameter, e, which has been artificially inserted, is nominally one. It is assumed

that the atmosphere is stationary and that the thrust vector lies in the vehicle's plane of symmetry.

In (1), mass specific energy, E, is employed as a state variable in place of velocity, V, where

E = V2/2 - bgr (5)

The reference point for zero gravitational potential is taken at a radial distance approaching infinity.

The symbol V is to be taken as

V = [2(E + B/r)] 1/2 (6)

everywhere it appears in this analysis. Position and heading dynamics are decoupled from (1-4)

by the assumption of a non-rotating Earth and are not of interest at present.

Drag is assumed to have a conventional parabolic form

D = qSCDo + KL 2/qs where q = pV 2/2 (7)



The assumedfunctionaldependencefor CDo, the zero lift drag coefficient, and K, the coefficient

of the induced drag component, are:

CDo = CDo(M) K = K(M,c_) (8)

Lift is given by

L = qsCL(r,E,o%_e) = qsCLct(_.- _ZL) (9)

The lift curve slope, CLa, and the angle of attack for zero lift, 0tZL, are assumed to be Mach

number dependent.

A multi-mode propulsion system composed of n different engine types (i.e. cycles) is assumed.

Net thrust is given by

T = [ Fc 2 + Fs 2 ]1/2 (10)

where FC represents the component of net thrust along the velocity vector and Fs represents the

component of net thrust normal to the velocity vector, i.e. in the lift direction. These components

are depicted in Figure 1 and given by:

p n

FC = EaqjTjcos(0t+ETj) + E TiCOS(tX+ETI)

j=l i=p+l

(11)

p n

Fs= ETIjTjsin(tX+eTj)+ _ Tisin(ot+eT,)

j=l i=p+l

(12)

Each of the n engine cycles (i.e. turbojet, ramjet, scramjet, rocket, etc.) is controlled by variation

of the fuel flow rate in direct proportion to command. Of the total number of engine types to be

considered, p are assumed to exhibit a linear relation between fuel flow rate and thrust generation.

Each engine of this type shall be controlled by varying its throttle setting, "qj. This assumption is

typically employed for rocket engines. For the remaining n-p engine cycles, the relation between

fuel flow rate and thrust generation is assumed nonlinear. Control of each engine of this type shall

be effected by variation in its fuel equivalence ratio, (Pi. This behavior is typical of air-breathing
¢

cycles. The subscripted symbol Tic (k = 1 to n) in (11) and (12) represents the net thrust generated



byanynumberof independentenginesemployingaparticularcyclek. ThesymbolETk denotes the

angle between Tk and the body longitudinal axis (see Figure 1). Note that in general,

Tj = Tj(r,E,ot) TIj _ [0,1] j= l to p (13)

Ti = Ti (r,E,q_iJx) q)i _ [0,1] i = p + 1 to n (14)

eTk= eTk (r,E,0_) k = 1 to n (15)

The total fuel flow rate, f, is given by

p n

f= _TIj cj(r,E,oOTj(r,E,o_)+

j=l i=p+l

q_ifmax, (r,E,cc) (16)

where cj represents the thrust specific fuel consumption for engfine type j and fmax i represents the

product of thrust specific fuel consumption and thrust at a stoichiometric fuel-to-air ratio for engine

type i. For convenience all of the engine throttle controls are collected into a single vector as

follows,

KT = [111, _2 ..... Tlp, q)p+l ..... (Pn]
(17)

The control variables are angle of attack, o_, bank angle, o, the fuel equivalence ratios, (Pi, for

engine types 1 through n, and engine throttle settings, Tij, for engine types n+ 1 through p. The

objective is to minimize the fuel consumed in gaining energy, with the performance index given

by,

J = - m(tf ) (18)

The final time, tf, is flee. Minimization of (18) is to be carried out subject to maximum dynamic

pressure and maximum aerodynamic heating rate inequality constraints and acceleration limits

defined by

C1 (r, E) = q - qm_x -<0 (19)

5



C2(r, E, 00= Q- Qmax< 0 (20)

C3 (r, E, m, a, _:) = nl - nlmax < 0 (21)

C4 (r, E, m, or, _) = n2 - n2max < 0 (22)

The symbols nl and n2 represent the accelerations in g's along and normal to the velocity vector

(i.e. in the lift direction), respectively.



Singular

SECTION 3

Perturbation Analysis

3.1 Reduced Solution.

Lift as a Control We first consider a simplified problem in which flight is constrained to a

vertical plane, the thrust vector is aligned with the velocity vector, and thrust production is

assumed independent of vehicle angle of attack:

a = 0, Fs = 0, Fc = T (23)

Furthermore, we consider only that portion of the trajectory in the hypersonic regime. In this

regime we need only consider a dual-mode propulsion system (i.e. n = 2). The system consists of

a bank of scramjet engine modules assumed to operate continuously and a rocket engine that can be

throttled as desired. The constraint (21), which can lead to the requirement for intermediate values

of throttle setting, will be ignored. In this simplified setting the total fuel flow rate and net thrust

can be represented as

T = Ts(r,E) + 1"1Tr(r) ; rl _ [0,1] (24)

f = Cs(r,E) T s + 1"1Cr(r) Tr (25)

where thrust specific fuel consumption is represented by cs for the scramjet and cr for the rocket.

Under these assumptions the governing equations of motion can be written as,

1_ - Vfr- D) (26)
m

th = -f (r,E,_) (27)

" L p. cos]( V cos y
= -- - + (28)

mV Vr 2 r

er = V sin_ _ (29)



Thecontrol variablesarenow rocketenginethrottle,1"1,andvehiclelift, L. Theobjectiveremains

to minimizethefuel consumedin gainingenergy.

Setting _ = 0 in (26-29) reduces the order of the dynamic system to two and results in what is

conventionally referred to as the energy state approximation. That is, altitude and flight path angle

dynamics are assumed fast in comparison to energy and mass dynamics, and altitude now takes on

the role of a control variable 9. The differential equations (28) and (29) are reduced to algebraic

equations which yield the following relations:

= 0 (30)

Lo = m[(Igr 2) - (V2/r)] (31)

The subscript zero denotes reduced solution values and is omitted below where not deemed

necessary for clarity. The reduced solution Hamiltonian is given by

where

Ho = _.E ]_ + _Lmria + constraints = 0 (32)

(tf) = - 1.0 (33)

Satisfaction of the minimum principle with respect to altitude, h, is equivalent to the following

operation (see Appendix B of reference 10),

ho* = arg max h [V(T - D)/f]
E = eorlBtant

T>D q_<qmax

rl='q* Q_< Qmax

(34)

Consideration of the constraints (19, 20) simply limits the search space over which the

maximization of (34) takes place. The superscript asterisk denotes an optimal value of control.

This operation yields an optimal altitude program as a function of vehicle energy and mass. Note

that 11 appears linearly in the Hamiltonian resulting in a bang-bang control solution for rocket

throttle setting. A switching condition, S, results from the evaluation of 3I-Io/3rl and is given by,

S = _.E(V/m) - XmCr , (35)



Using (32) to eliminate_-Ein (35)andtaking into accountthe signof _.m + yields the following

analytic switching condition:

11= 0 if [(Cr - Cs)/cr]Ts > D

rl=l if [(Cr-Cs)/cr]Ts < D

(36)

Intermediate values of rocket throttle setting are not optimal. This fact is revealed by examination

of the matrix Huu, which is required to be at least positive semidefinite along an optimizing singular

arc. For convenience, V, rather than h is taken as the control-like variable so that uT = [ V,rl ]. The

determinant of Huu, which is symmetric, must be greater than or equal to zero for positive

semidefiniteness. However, it can be shown that

det H m = -{Hvn }2
(37)

which is negative for Hvn * 0, which is generally the case.

It can happen that the velocity set is not convex in a region of interest, and, in the absence of
$

convexity, one can not guarantee that an optimal control exists. Thus the possibility of a chattering

control solution should be examined. Conclusions regarding this matter are model dependent and

are discussed in reference 16. It is sufficient to say here that no chattering solutions for rocket

throttle setting were found for the vehicle" models examined.

The reduced solution costates are determined as12:

7Lro= 0 kmo = - m(tf)/m (38)

L_to = 7LEo [2KV2Lo/(qs)] JLEo= ;Lmo {fm][V(T-D)] } (39)

i" The "influence function", kin, represents the variation in the performance index, J, with

respect to mass 11. Since J = - m(tf), Xrn cannot change sign (i.e. it is not possible for a reduction

in vehicle mass as fuel is expended along the climb path to increase the final mass of the vehicle).



Angle of Attack as a Control.Consider now the full model complexity formulated in Section

II with the exception that flight remains constrained to a vertical plane. That is, consider flight over

the entire Mach range, including the subsonic and supersonic regimes. Assume a multi-mode

propulsion system consisting of turbojet, ramjet, scramjet, and rocket cycles (i.e. n = 4). Allow for

a component of net thrust normal to the velocity vector and consider the possibility that the

performance of one or more of the air-breathing engine cycles is dependent on vehicle angle of

attack. Consider also the constraint on axial acceleration given by (21). The method of solution

proceeds as before. _ -.

Setting e = 0 in (1-4) reduces the differential equations (3) and (4) to algebraic relations:

"¢o= 0 (40)

Lo = m(ll/r 2 - V2/r) - Fs (41)

The control ok) is eliminated via (41). That is, given values of r and E, % is iteratively determined

using (41) while enforcing trim _hrough elevon deflection, Be. More concisely,
d

Oto(r,E) = {%: L(r,E,ot,Se) - Lo(r,E,r_,0t) = O} (42)

The reduced solution Hamiltonian is again given by (32). But since drag, given by (7), is

dependent on Lo 2, which in turn depends on engine controls through Fs, as given in (12), the (Pi

and the rlj both enter nonlinearly in the Hamiltonian. Satisfaction of the minimum principle w.ith

respect to h and 7_is equivalent to the following operation,

ho*, _*= arg max h,n [V(Fc- D)/f] ! E__q_a_tant Q__QmaxFC> D (43)

I nl <-nlmax n2 < n2max

This operation yields both an optimal altitude program as a function of vehicle energy and mass

and the corresponding optimal engine controls.

If we neglect the dependence of reduced solution drag on the sine component of net thrust, Fs,

then the rlj enter linearly in Ho. In such case we have bang-bang solutions for the l"]j with possible

10



singulararcsalongwhich intermediatethrottlesettingsmaybeoptimal.The switching functions

aredeterminedasbeforefrom OHo/-drlj,

Sj = [f(_) cos(0_+ eTj)/(Fc(_X) - D)] - cj j = l+n to p (44)

Throttle settings are then governed by the following relations:

l_j = lqmin if Sj <. 0

'rlj singular if Sj = 0 for finite time

l"lj= l"lmax if Sj > 0

(45)

The Sj are dependent on the rlk, k _ j. Thus an iterative scheme is required to arrive at the optimal

combination of throttle settings ifj > 1.

Thus far in the analysis it has been assumed that each engine cycle can be independently

controlled. Since much of the captured mass flow and some or all of the engine hardware will be

shared by the various engine cycles employed, it is perhaps more useful to consider operation of

the various air-breathing cycles as mutually exclusive. In reality, dual combustion over a finite

range of Mach number will be required to smoothly transition from subsonic to supersonic

combustion 13. One can view the case of mutually exclusive engine cycles as a problem in which

the system equations are discontinuous at cycle transition points along the trajectory. Following the

terminology of reference 11, suppose that one set of system equations,

x = f (1) (x,u,t) (46)

applies for t < h, where tl is free, and another set of system equations applies for t > tl, namely,

x = f (2) (x,u,t) (47)

Here x and u denote general state and control vectors, respectively. It is necessary for optimality

that

H (1) (tx-) = H (2) (h+) (48)

The condition (48) can be used to determine the optimal point of transition from one set of system

equations to another. In this case f (1) and f (2) differ only by the thrust produced by the particular

engine cycle being employed and by the associated difference in fuel consumption. Satisfaction of

11



(48) canbe reducedto the following equalitywheretheconditionHo= 0 hasbeenemployedto

eliminatecostatedependence

(Ti cos(ix+ I_Ti)- D)/ciTi = (Tj cos(Ix + eTj) - D)/cjTj (49)

This result is, in fact, obvious from examination of (43). That is to say, points at which a change

in engine cycle can occur require that the function to be maximized be equal for either choice of the

propulsion cycle. When the functional evaluations are not equivalent, one or the other is greater

and dictates the optimal choice of cycle.

Bank Angle as a Control It is reasonable to assume that the performance of the proposed

scramjet engines will be sensitive to vehicle angle of attack. Furthermore, it is quite likely that

thrust production will depend on angle of attack in a nonlinear way. Given that this is true, any

particular engine installation will exhibit an angle of attack for which engine performance is best.

This angle of attack for best engine performance, call it the design angle of attack, may in turn vary

with Mach number 14. If such nonlinear behavior is assumed and the optimal flight path is

constructed using (43), one finds that, since fuel optimization is very sensitive to engine

performance, the optimal trajectory tends to remain on a contour along which the design angle of

attack is maintained. It can happen, however, that overall performance is improved if the design

angle of attack is maintained while flying at lower altitudes, and hence at higher values of dynamic

pressure. Of course, maintaining the design angle of attack at a higher dynamic pressure generates

additional lift which causes the vehicle to immediately climb above the desired flight path. Thus, in

order to fly along the optimal path, the extra lift associated with maintaining the design angle of

attack must be "dumped." One procedure for accomplishing this task is to roll back and forth in

such a way that, on average, the component of lift in the vertical direction is reduced to that

required to maintain the optimal climb rate. It may in fact be more practical to appropriately offset

the initial vehicle heading and to then execute a single coordinated turn that accomplishes the same

objective. With bank angle thus introduced as an additional control, satisfaction of the minimum

principle with respect to h, x, and Ix is equivalent to the following operation,

ho*, _*, Ixo* = arg max [V(Fc - D)/f] ] _ (50)
h,_,_

IE = constant Fc > D

I q -<qmax Q<_ Qmax

[ nl <_nlmax n2 < n2max
t
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wherebankangle,a, is determinedsothat

L coso = Lo (51)

3.2 Boundary Layer Analysis.

The unconstrained boundary layer solution associated with (1-4) is obtained by introducing

the time transformation x = t/E and again setting _ = 0. That is, energy and mass are held constant

while altitude and flight path angle dynamics are examined on a stretched time scale. The resulting

necessary conditions for optimality yield an optimal feedback guidance law for lift control which

depends on the unknown costate _.'t (see Section 5.2.2 of reference 10). In the absence of a state

inequality constraint such as (19), a suitable approximation to _ can be obtained by linearizing the

boundary layer necessary conditions about the reduced solution10 As. However, this procedure is

not applicable when the reduced solution lies on a state constraint boundary. This problem is

discussed in detail in Appendix A. The boundary layer control solutions for engine throttle settings

are similar to those of the reduced solution. The rlj enter the Hamiltonian linearly, but the

switching conditions that govern their behavior are also dependent on the unknown costate _.'t.

This dependence drops out of the switching conditions if the sine component of thrust, Fs, is

neglected.

Feedback Linearization - Lift as a Control. As an alternative approach to handling the

control of altitude and flight path dynamics, a nonlinear transformation technique is employed as

follows 10. Consider the boundary layer altitude and flight path angle dynamics given in (32) and

(33) on a transformed time scale x = fie. Note that we have system equations in block triangular

form. To proceed we take successive total time derivatives of r until explicit dependence on the

control appears. The prime notation denotes differentiation with respect to x.

r" = (LcosT)/m + (V 2 cos2%,)/r - (B/r 2) (46)

The control, L, appears in the second time derivative and we define U, the pseudo control, as

U = r" (47)

It is desired that U be determined as follows

13



U = Kp (ro- r)+ Ka (ro- r') (48)

where ro denotes the reduced solution radius at the current energy level and the time derivative of

ro denotes the climb rate required to stay on the reduced solution as energy is gained. This climb

rate can be estimated by defining an appropriate increment in energy, evaluating the reduced

solution at this higher energy level, and then estimating the required climb rate using a forwards

difference.

The inverse transformation is defined by solving for L in (47) using (46) and (48),

L = {U + (Igr 2) - [(V2/r)cos_] } (m/cosT) (49)

This lift control solution is constrained directly by (21). Note that as r and "f approach their

reduced solution values, (49) approaches the reduced solution value of lift given by (35). A block

diagram depicting the conceptual implementation of the nonlinear transformation technique to yield

the controller defined by (49) is presented in references 10, 15 and 16. The corresponding closed

loop transfer function is

• G(s) = (Kas + Kp)/(s 2 + KdS + Kp) (50)

where the gains Kp and Kd for the second order system can be written in terms of the damping

ratio, 4, and natural frequency, con, as

Kp = %2 Kd = 2_co_ (51)

The performance of this controller can be dictated by selecting the values of Kp and Kd to yield the

desired dynamic response. This lift control solution applies equally well to the unconstrained or the

inequality constrained case.

Feedback Linearization - Angle of Attack as a Control Direct extension of the lift

control solution presented above to include the angle of attack effects included in (1-4) results in

the following feedback control law,

14



(63)

The pseudo-control, U, is defined as before where again Kp, proportional gain, and K_, rate gain,

are selected to yield the desired controller performance. Optimal lift, which is directly constrained

by (21), is then determined by,

L* qsCla (0_* ---_ZL) (64)
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SECTION 4

Vehicle Models

Four different vehicle models were employed to generate the numerical results presented in the

next section. The fin-st, referred to as Model 1, is based on a hypersonic research vehicle concept

studied by NASA in the 1970's and is powered by a combination of scramjet and rocket

propulsion 10. This model is useful only in the hypersonic regime. Models 2 and 3 are based on a

"Generic Hypersonic Aerodynamic Model Example," or GHAME, developed more recently by

NASA 17. A nominal configuration of 233.4 feet total length and 300,000 pounds gross take-off

weight was assumed. The trimmed aerodynamic characteristics were taken directly from the

GHAME documentation. For Model 2 the largely empirical GHAME I aerodynamic data set was

employed. For Model 3 the numerically generated GHAME II aerodynamic data set was employed.

Both sets extend from take-off to orbital velocities. Thrust for both Models 2 and 3 is provided by

a multi-mode propulsion system composed of turbojet, ramjet, scramjet, and rocket engines. The

airbreathing propulsive characteristics for this model were adopted from reference 18. A rocket,

sized for orbital insertion (roughly 15,000 lbs. of thrust in vacuum), is assumed available over the

entire Mach range l°. This system corresponds to the case p = n = 4 in (11), (12), and (16). As a

result, the switching conditions given by (45) can be used to determine all of the cycle transition

points. Figure 2 presents the adopted variation in fuel specific impulse with Mach number for the

various engine cycles. The various engines where sized by trial and error and do not represent an

optimal configuration. The generation of scramjet thrust due to mass ejection when operating above

a stoichiometric fuel-to-air ratio is not modeled. Thrust induced pitching moments, which can be

significant 16, were not considered when trimming the aircraft. A fourth model was constructed by

combining an aerodynamic data set provided by the NASA Langley Research Center (referred to as

the "Langley Accelerator") with the propulsive data described above. Additional details regarding

these models are available in references 10 and 19.

A simple model for convective heating rate per unit area, Q, was adopted from reference 20,

Q - (4.919 E-08) p0.5 V3.0 (52)

Equation (52) gives Q in Watts/cm 2 given density in kg/m 3 and velocity in m/sec and corresponds

to equilibrium conditions on the surface of a sphere or wing leading edge 10 cm in radius and

cooled by reradiation alone. For reference, a contour of Q = 800 in the altitude-velocity plane

corresponds roughly to a contour along which skin temperature remains at approximately 2000 ° F

three feet aft of the leading edge assuming laminar flow 21.
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SECTION 5

Numerical Results

Reduced solution trajectories were generated by carrying out the maximization process

indicated in (34), (43), and (50) over the energy range from take-off to orbit. Numerous results are

available in reference 19. Only a few representative plots are presented here. Figure 3 depicts

reduced solution trajectories for Model 1 in the altitude/velocity plane. Dynamic pressure is limited

to 2000 psf while maximum allowable heating rate is -;,aried. The trajectories follow the dynamic

pressure constraint boundary until the specified contour of maximum heating rate is encountered.

The path then follows the constant heating rate contour until reaching the trajectory for which no

heating rate constraint was enforced. At this point the heating constraint becomes inactive and the

trajectory rejoins the unconstrained climb path. The mechanism causing the altitude discontinuity at

a velocity of 22,000 ft./sec, is similar to that which has been noted in the transonic region for

supersonic fighter aircraft 15. Included in Figure 3 is the rocket switching surface, i.e. the contour

along which the switching function (39) remains zero. At altitudes below this contour the optimal

rocket throttle setting is zero whereas above the contour the optimal throttle setting is one. The

performance penalty paid in enforcing the heating constraint is presented in Figure 3 as time

required and percent gross weight consumed to achieve an orbital energy level. This performance

penalty must be weighed against the complications of using active cooling, the weight of heat

shielding, and various other factors in the vehicle design process.

Figure 4 presents the reduced solution climb path in the altitude-velocity plane for Vehicle

Model 4. The dynamic pressure constraint is again enforced, an aerodynamic heating constraint is

not, and a limit on axial acceleration is introduced. The trajectories vary predictably as the

magnitude of the acceleration constraint is changed. Some throttling of the engines is employed but

in general the vehicle prefers instead to climb to reduce the excess thrust available. Note that the

altitude discontinuity present in Figure 3 does not occur for this vehicle, but is in fact implicit in

matching a terminal altitude condition at orbital velocity. The horizontal bars at the top of the figure

indicate the velocity range over which the operation of each engine cycle was deemed optimal,

including regions of cycle overlap. The rocket operation was not optimal during atmospheric flight

for this case.

Computational investigations of the sensitivity of scramjet performance to changes in angle of

attack predict highly nonlinear behavior 14. Figure 5 presents a scramjet thrust scaling factor

employed to model this effect. This figure is based on a liberal interpretation of the computational
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resultspresentedin reference14.Thiscurveis shiftedwith respectto thehorizontalaxis in order

to representinlet designswhich favor maximumengineperformanceat anangleof attackother
than zero.

Figure 6 presents variations in the dynamic pressure constrained reduced solution trajectories

for Model 3 when thrust variation with angle of attack for both the ramjets and scramjets, as

depicted in Figure 5, is included. The angle of attack for best engine performance is varied over the

range from 0.5 to 3.0 degrees. When only scramjets are operating, the vehicle tends to prefer a

path along which the "design" angle of attack is strictly maintained. The performance penalty paid

for a change in the design angle of attack is modest however, since in this Mach region, the

acceleration capability of the vehicle is high. When the thrust scaling factor of Figure 5 is assumed

Mach dependent in accordance with the results of reference 14, a much greater variation in the

trajectory is experienced 19.

The peak in the trajectories at approximately 3000 ft./see, in Figure 6 is due to turbojet shut

down. This peak is significantly reduced when the turbojet inlet area is increased, indicating that

the climb away from the dynamic pressure constraint boundary is due to the decreasing level of

thrust available from the turbojet as the Mach number increases. With an increase in altitude comes

a reduction in vehicle drag, but the turbojet switching surface is encountered at an altitude of

approximately 75,000 ft. and the turbojet shut down. The SCRAMJET almost immediately

switches on, and with a much greater magnitude of thrust, can sufficiently overcome vehicle drag,

even at a higher dynamic pressure. Thus the trajectory returns to the dynamic pressure constraint

boundary. Note that the ramjet is turned on at a very low Mach number (i.e. M = 0.81) even

though it is extremely inefficient in this speed range (see Figure 2). This behavior has been noted

by past researchers and is due to the presence of a "pinch point" (i.e. a point of minimum thrust

minus drag) in the transonic region. The size of the ramjet was selected without regard to its

weight. However, optimization of the vehicle configuration must take into account the mass of

each engine and the mass of the required engine cowling. Results obtained indicate that the optimal

trajectory for such an optimized configuration may prefer the use of rocket (rather than ramjet)

thrust to augment turbojet thrust at the transonic pinch point.

As stated above, cycle operations are represented in Figure 6 by horizontal bars. The transition

points were very nearly the same for thrust independent of or dependent on angle of attack. The

overlap in air-breathing cycles is desirable to provide smooth cycle transitions. For Model 3,

turbojet sizing requires about 25 sq. ft. of inlet area, whereas the total number of ramjet modules

selected require 200 sq. ft. of inlet area. Thus it should be possible to start the majority of the
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ramjetenginesin a sequencethatavoidsexcessiveaccelerationswhile maintainingturbojetthrust.
Once the velocity for turbojet shut-down is reached,turbojet airflow can be diverted to the

remainingramjetmodules.The numberof requiredscramjetmodulesis likewise larger than the

numberof requiredramjetmodules,anda similar argumentfor cycle overlapcanbe made.Of

course,the actualsystemwill no doubtsharemuchof theenginehardwareamongstthe various

cyclesemployedin additionto sharingthe capturedmassflow. Thustheactualoptimization of

enginetransitionswill bemorecomplex.

Modulation of thevertical componentof lift via bankanglevariation wasalsoevaluatedfor

Model3. Carryingout themaximizationprocessindicatedin (50)altersthetrajectoriespresentedin
Figure 6 only slightly. The changescorrespondto thoseportionsof the trajectory whereoto <

tXdesign. As such, only a very modest gain in performance was achieved. However, if design

constraints force the scramjet design angle of attack to differ significantly from the angle of attack

for zero lift, much greater savings can be obtained.

Figure 7 depicts the reduced solution trajectory for Vehicle Model 2 in the altitude-velocity

plane. A maximum allowable dynamic pressure of 2000 psf is the only constraint enforced. The

dashed line labeled 1 represents the fuel-optimal climb path when scramjet performance is assumed

independent of vehicle angle of attack. The percent of take-off gross weight consumed in attaining

orbital energy is 61. The solid line label 2 represents the fuel-optimal climb path when scramjet

performance is assumed to vary with angle of attack according to Figure 5, with optimum engine

performance assumed to occur at an angle of attack of 3 degrees across the Mach range. In this

case the trajectory tends to remain on the dynamic pressure constraint boundary for the majority of

the flight. The percent of take-off gross weight consumed in attaining orbital energy in this case is

68.2. The weight penalty of 7.2 percent of the take-off gross weight most likely exceeds the

payload capability of the vehicle. This comparison indicates the critical need to accurately model

the many interactions present among disciplines.

Figure 8 depicts the altitude time history for simulated flight of Model 3 using the lift control

law derived via feedback linearization to track the corresponding reduced solution. The ramjet

cycle was eliminated and the trajectory is subjected to the following constraints: dynamic pressure

< 2000 psf, reference heating rate < 400 Watts/cm 2, and axial acceleration < 3.0 g's. In general

this vehicle preferred to climb in order to satisfy an axial acceleration limit rather than to throttle

back the engines. The rapid climb at roughly 400 seconds is due to scramjet turn-on and this

preferred behavior. The large overshoot just before 500 seconds is due to the inability of the

vehicle to pull down as the altitude for which nl < 3 at full throttle is approached. This overshoot
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can be reducedsomewhatby careful gain schedulingandhaving the controller look aheadin

energy.However, therequirementto fine tunethecontrollerfor eachtrajectorygeneratedis not

desirable for the intended applications of this algorithm. The problem has less to do with the

controller than with the generation of the trajectory itself.

Over the vast majority of the trajectory the flight path angle is small and the flight path angle rate

very modest so that (41) provides a good approximation to the actual lift required to follow the

flight trajectory. However, when the scramjet is initially turned on at a relatively high value of

dynamic pressure, the energy rate of the vehicle is greatly increased. The necessity of

simultaneously climbing to avoid violating the dynamic pressure constraint boundary results in a

large flight path angle rate. The time scale separation assumed in (1-4) is simply not appropriate

over this small portion of the trajectory. A simple way to overcome this difficulty consists of

estimating the flight path angle and time interval between energy levels, combining them to form an

estimate of the flight path angle rate, and then inverting relation (3) to obtain the required lift. By

restricting the accelerations normal to the flight path when constructing the reduced solution in this

region, a feasible trajectory can always be obtained.

Figure 9 depicts the reduced solution climb path for Model 3 again with a maximum dynamic

pressure of 2000 psf, a maximum aerodynamic heating rate of 400 Watts/cm 2, but with a

maximum axial acceleration of i g to amplify the problem (y = 0 in the lift calculations). Also

depicted is the modified trajectory when the method described above is implemented (y and dy/dt

0). The results in the altitude/velocity plane are quite dramatic over the speed range from 3,000 to

12,000 ft./sec. The near vertical altitude transition at a velocity of approximately 3,000 ft./sec, is

eliminated, as is the dive that followed. The arc which follows in the velocity range from 5,000 to

13,000 ft./sec, corresponds to the region over which the axial acceleration limit is active. Less

altitude change is commanded in this region; more throttle is used to reduce the axial acceleration

instead. The remainder of the trajectory, the same for either case, constitutes flight along the

heating constraint boundary. Despite the significant change in trajectory, only 200 additional

pounds of fuel are consumed and the difference in time of flight is only about 60 seconds. These

small differences are due to the fact that the velocity interval from 3,000 to 12,000 ft./sec, is

traversed very rapidly in time, corresponding to only a small fraction of the total time of flight.
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SECTION 6

Conclusions and Recommendations

6.1 Conclusions

This research effort has demonstrated the utility of singular perturbation methods in the study of

single-stage-to-orbit airbreathing vehicles and, in particular, in the derivation of efficient algorithms

for ascent trajectory optimization and optimization of engine cycle transitions. The analysis extends

over the entire Mach range from take-off to orbit and accomodates a realistic nonlinear vehicle

model and all pertinent trajectory constraints. A number of important modeling and analysis issues

not treated in the early stages of this effort were identified and addressed during this reporting

period. Reasonable assumptions regarding propulsion system characteristics were introduced that

allow the optimal engine cycle transition points to be determined as a function of state using a

simple iterative test. These switching conditions lead to significant computational savings during

the optimization process. Functional dependence of scramjet thrust on vehicle angle of attack was

shown to have a major impact on the nature of fuel-optimal ascent trajectories. Also, depending on

the actual vehicle configuration and the characteristics of the engine inlets, roll maneuvers used to

modulate the vertical component of lift were shown to sometimes improve the index of

performance during ascent. Over those limited regions of flight where the energy state

approximation was found to be poor, simple lift corrections that account for non zero flight path

angle and flight path angle rate were introduced that significantly improve the trajectory generation

methodology.

6.2 Recommendations

Future efforts should be directed towards enhancing the performance and applicability of the

derived algorithm. Such efforts should include the development of detailed multi-disciplinary

vehicle models, the incorporation of additional controls such as thrust vectoring, reaction jets, and

variable geometry, optimal control of the total heat load on the vehicle, the study of three-

dimensional maneuvers, including abort, an examination of robustness issues, and improvements

in speed of operation.

The demonstrated capability for rapid near-optimal trajectory generation has yet to be exploited

in the development of efficient tools for fully integrated hypersonic vehicle design. Efforts to move

in this direction should include tieing a parameter optimization algorithm around the trajectory

optimization code that has been developed and the incorporation of this algorithm into a fully

integrated control system design methodology.
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Work of more general theoretical interest was also initiated during this reporting period. It was

found that state-variable inequality constrained boundary layer systems are not well understood.

Many of the characteristic features of such systems were identified. For instance, it was found that,

when the reduced solution lies on a state-variable inequality constraint boundary, the boundary

layer trajectories are of finite time in the stretched time scale. The possibility of costate

discontinuites at the juncture between constrained and unconstrained arcs makes direct application

of existing theory difficult. A transformation technique was identified that eliminates some of these

difficulties, but at the cost of possibly increased system order and the introduction of singular arcs.

Further research in this area is recommended.

Continued work with the integrated aerodynamic/propulsion performance prediction program

has resulted in a highly accurate and useful means both for providing the needed vehicle parameters

in the present program and for more general tmnsatmospheric flight performance calculations. The

program is evolving into a completely interactive performance estimation package, which will make

it possible to view effects of small configuration changes on any performance parameters. The

user can view in animated graphical form the effect of desired vehicle configuration changes.

These modifications can be entered graphically by moving defining points on the vehicle outlines

or by means of shifting simulated "levers" built in to the computer program. For example wing

incidence angle, twist, wing area, fin cant angle, etc. can be changed continuously with

simultaneous graphical output showing the effect on selected performance parameters. We

anticipate many applications for this analytical capability and wili continue to improve upon it.

6.3 Publications

Four conference papers have now been published which discuss most of the results of this

research effort 12,15,16,49. A Ph.D. Dissertation that details the entire effort to date was published in

Decemeber of 198919. A full-length paper entitled "Rapid Near-Optimal Trajectory Generation for

Single-Stage-to-Orbit Airbreathing Vehicles" has been submitted for publication in the AIAA

Journal of Guidance, Control and Dynamics and a new paper is now being prepared for the 1990

AIAA GN&C Conference on the issue of state contraints in singularly perturbed systems.
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Appendix A

State Inequality Constrained Boundary Layers

Abstract

The established necessary conditions for optimality in nonlinear control problems that involve

state-variable inequality constraints are applied to a class of singularly perturbed systems. The

distinguishing feature of this class of systems is a transformation of the state-variable inequality

constraint, present in the full order problem, to a constraint involving states and controls in the

reduced problem. It is of particular interest to construct the zeroth order boundary layer solution

when the reduced solution lies on the constraint boundary. It is shown that, in general, the

boundary layer problem is of finite time in the stretched time variable. A special case is identified

in which the boundary layer time scale transformation results in an increase in state inequality

constraint order. In this case, required smoothness properties possessed by the full order system

may be lost, and the application of existing necessary conditions for singularly perturbed systems

then becomes invalid. A Valentine transformation can be used to regain required smoothness, but

at the price of introducing singular arcs and an increase in system order. Finally, the various

system properties and characteristics described in the body of the appendix are illustrated with

several simple examples.

I. Introduction

State inequality constraints are commonly encountered in the study of dynamical systems. The

study of rigid body aircraft dynamics and control is certainly no exception. For instance, a

maximum allowable value of dynamic pressure is usually prescribed for aircraft with supersonic

capability. This limit is required to ensure that the vehicle's structural integrity is maintained and

constitutes an inequality constraint on vehicle state. State inequality constraints have been studied

extensively by researchers in the field of optimal control, and necessary conditions for optimality

when functions of state are constrained have been obtained 1-3. However, the construction of

solutions via this set of conditions proves very difficult, and most practitioners rely on direct
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approachesto optimization that employ penalty functions for satisfactionof stateinequality
constraints4.

As discussedin the literature,theuseof singularperturbation techniques in the study of aircraft

trajectory optimization can, through order reduction, lead to both open and closed loop solutions

that are computationally efficient. These methods can also be used to circumvent difficulties

associated with enforcing a state inequality constraint in the reduced solution 5. As an example

consider the minimum time intercept problem ot"6. A near optimal feedback solution is obtained via

singular perturbation theory that includes consideration of an inequality constraint on dynamic

pressure. In the zeroth-order reduced solution, algebraic constraints are obtained when the

perturbation parameter, e, which premultiplies the so called "fast" dynamic equations, is set to

zero. These constraints can be used to eliminate the fast states (in this case altitude and flight path

angle) from the reduced problem. One can choose, however, to retain one or more of the fast states

and to eliminate instead some of the original control variables. The retained fast state variables are

treated as new controls, and the original state constraint becomes a constraint involving both state

and control in the reduced problem. In subsequent analysis of boundary layers, altitude resumes

its status as a state variable, and dynamic pressure once again becomes a function of state alone.

However, because the reduced solution for the example F-8 aircraft does not lie on the dynamic

constraint boundary during ascent, the inequality constraint on dynamic pressure was not

considered. Of note is the fact that modern supersonic fighter aircraft (such as the F- 15) do ride the

dynamic pressure constraint boundary during the ascent leg of the minimum time to intercept path.

In addition to the example cited above, dynamic pressure bounds are encountered during fuel-

optimal climb for supersonic transports 7 for rocket powered launch vehicles such as the U.S.

space shuttle 8 , and for single-stage-to-orbit air-breathing launch vehicles 9. If, as in applying

singular perturbation methods in seeking a solution to any of these problems, the reduced solution

climb path lies directly on the dynamic pressure constraint boundary for a portion of the flight,

then it is necessary to consider boundary layer transitions onto the constrained arc. This problem,

which proves quite perplexing, has received almost no attention in the literature.

This appendix documents an initial investigation of the features of boundary layer transitions to

state constrained arcs. Section II provides a brief review of fL,'St order necessary conditions derived

for state-variable inequality constrained problems in optimal control. Section III discusses the

optimal control of singularly perturbed systems subject to state-variable inequality constraints in

general, and in particular examines the features of state inequality constrained boundary layers

when the reduced solution lies on the constraint boundary. Section IV provides several simple
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exampleswhich illustratetheproblemfeaturesdiscussedin earliersections.SectionV completes

theappendixby providingsomeconcludingremarks.

II. Constrained Problems in Optimal Control

The introduction of a state inequality constraint of the form

S(x,t) < 0 (A. 1)

can lead to considerable difficulty when attempting to obtain an optimal control solution. One

approach to incorporating state inequality constraints into necessary conditions for optimality

consists of constructing successive total time derivatives of S until explicit dependence on the

control appears 11. If p time derivatives are required then (1) is referred to as a pth order state

variable inequality constraint. The function SP(z,u,t)=O is then adjoined to the Hamiltonian as a

constraint to be enforced when S=O. This approach introduces the following additional tangency

conditions at the point of entry to a constrained arc

I S(z,t)

Sl(z,t)N(z,t) = .

p-1
[S (z,t)

= 0 (A.2)

These same tangency conditions also apply at a point where the path leaves the constraint

boundary. The equations (2) constitute a set of interior boundary conditions that must be met at

each juncture between a constrained and unconstrained arc. Unfortunately, in order to satisfy these

interior boundary conditions one must allow for the possibility of discontinuities in the costate

variables at the junctures. An alternative set of necessary conditions can be obtained by adjoining

the constraint function, rather than its pth derivative, to the Hamiltonian and then employing a

separating hyperplane theorem 22. These conditions prove simpler and "sharper" than those of

reference 11 however the possibility of discontinuous costates is still present. The gap between

the necessary conditions of references 11 and 22 is defined in reference 23. A third alternative

involves enploying a transformation technique in which a slack variable is used to transform the

state inequality constrained problem into an unconstrained pro!plem of higher dimension 3°,31. The

work associated with the derivation of these first order necessary' conditions is detailed in
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references32-38. Secondorder necessaryconditions for optimality in thepresenceof state
constraints have also been derived39as have conditions for various special cases4°. Work

continuesin theareaof stateconstrainedoptimizationasevidencedby theapproachof Lowen4k

III. Optimization of Singularly Perturbed Systems

Subject to State Inequality Constraints

Consider the system of singularly perturbed nonlinear differential equations:

dx/dt = f(x,y,u,t) (A.3)

dy/dt = g(x,y,u,t) (A.4)

with an index of performance of the form

t r

J = ¢p[z(t f), tf] + _° L[z(t), u(t), t]dt (A.5)

where X and f are of dimension n, y and g are of dimension m, X(to) and y(to) are given, _ is a

small parameter, to < t < tf, and the control u(t) is of dimension p. Zero order necessary conditions

for optimality of the associated reduced and boundary layer problems in the absence of state

constraints are readily available 42. However, the following restrictions apply: f, g, 0f/0x, 0f/Oy,

Og/3x, and 0g/Oy must be continuous and u must be piecewise continuous. Because of these

restrictions on smoothness a direct extension of the necessary conditions of for state constrained

problems to include singularly perturbed systems is not possible. This is due to the previously

mentioned fact that discontinuities in the costates can occur at the junctures between constrained

and unconstrained arcs. Alternately, the state inequality constrained singularly perturbed problem

of interest can be converted into an unconstrained singularly perturbed problem of higher

dimension by introduction of a slack variable 3°. This approach does eliminate the problem of

discontinuous costates. However, the state constrained arc is replaced by a singular arc and the

prospect of increased system dimension is unwelcome given the basic tenet of seeking order

reduction.

Consider the flight dynamics problem detailed in the main body of this report. An inequality

constraint on dynamic pressure of the form
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S(h,V)= q - qmax-<0 (A.6)

is to be enforced where

q - 9V2/2 (A.7)

The symbol 9 represents atmospheric density and V represents the flight velocity. Given the

equations of motion (1-4) expressed in the main body of this report, the first time derivative of

(A.6) can be expressed as,

dS/dt = dq/dt = [V3(bp/br)/2 - pitV/r2] siny + pV(T - D)/m (A.8)

Recall that the symbol T represents thrust, D, aerodynamic drag, m, vehicle mass, r, radial

distance from the center of the Earth, y, flight path angle, and It, the gravitational constant for the

Earth. Assume, as is typically done, that atmospheric drag can be represented as follows,

D = qsCoo + KL2/qs (A.9)

where s represents an aerodynamic reference area, CDo,the zero lift drag coefficient, and K, the

coefficient of the induced drag component. Note that the drag is explicitly dependent on the lift, L,

which is treated as a control. In addition, the relation for thrust, T, is usually explicitly dependent

on the engine throttle control. These controls appear explicitly in the first time derivative of the

constraint function, (A.8), and it is thus classified as a first order state inequality constraint (i.e. p

= 1). It is shown in reference 22 that when the constraint function is adjoined directly to the

Hamiltonian and p = 1, no jumps in the costates will occur at the entry of an unconstrained arc onto

a constrained arc. In this case the smoothness properties required by general singular perturbation

theory are not violated and we may proceed with the application of singular perturbation methods

with confidence.

The state inequality constraint on dynamic pressure is conveniently reduced to a state and

control constraint function in construction of the reduced solution (i.e p becomes zero). This

occurs because altitude, a state variable in the full order problem, becomes a control variable in the
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reducedsolution.Enforcingthisstate/controlconstraintin thereducedsolutionis a trivial matter.

Now considertheconstructionof the zeroth order initial boundary layer. Assuming that energy is

characterized as a slow state, application of the time stretching transformation 't = t/e and again

setting e to zero yields an energy rate of zero. As such, the last term in (A.8) is no longer present.

Instead, the first time derivative of the constraint function is given by,

dS/d'r = dq/d'r = [V3(Op/0r)/2 - p_V/r 2] sin), (A. 10)

With the last term of (A.8) absent, control dependence does not explicitly appear in (A. 10). That

is, the classification of the constraint function is altered following the time scale transformation

when e is set to zero. Taking the time 'r derivative of (A.10), (i.e. forming the 2 nd time 'r derivative

of S), yields a term containing the time derivative of the flight path angle, 7. The expression for

flight path angle rate is as follows,

L g cos)' V cos)'
),'= _ (A.1I)

mV Vr 2 r

which is explicitly dependent on the lift control. Thus, in the boundary layer, the inequality

constraint on dynamic pressure is 2 na order. Unfortunately, there is no guarantee that the costates

are continuous for this case as there was for the case p = 1. Note that this type of behavior, in

which the inequality constraint function order varies, is not present in all singularly perturbed

problems with state inequality constraints, just for a certain class of them. For instance, if the

constraint function is dependent on fast states alone, this variation does not occur.

If jumps in the costates are in fact present at the juncture between an unconstrained and a

constrained arc, the smoothness properties required are violated and the available necessary

conditions for optimal control of a singularly perturbed system cannot be applied directly. In some

cases it is not possible for the boundary layer dynamic system to "ride" the constraint boundary

before reaching the reduced solution. In such case the boundary layer costates can, at most, be

discontinuous at the juncture between the initial boundary layer and the reduced solution and only

if the reduced solution at that point is on the constraint boundary. It is also possible that no such

jumps will occur.

-..

If we proceed assuming that such jumps do not occur, then in most cases of interest the

functional form of the boundary layer control solution in the presence of a state-variable inequality
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constraintcanbeobtained.If this functional form involvesanunknowncostate,thenuseof the

derivedcontrol solution is preventedunlessthe associatedtwo point boundaryvalue problem

(TPBVP) is solved.To avoidsolutionof theTPBVP,as is desiredin seekingasolutionsuitable
for on-board,real-timeimplementation,anapproximationfor theunknowncostatecanbeformed.

If thecostatehistory is continuous,the linearizationtechniqueof reference43 canbe appliedto

form theestimate.Unfortunately,for thecasedescribedabovein which thereducedsolutionlies

on theconstraintboundaryandtheinequahtyconstraintorderis elevatedto2 by theboundarylayer

timescaletransformation,purely imaginaryrootsresultwhenthelinearizationtechniqueis applied.

Thusit is notpossibleto f'mda stablizingcostateapproximationgivenarbitraryinitial states.In an
unconstrainedproblem,the lackof anappropriateeigen-structureindicatesthat theproblemdoes
not exhibit the time scalepropertiesassumed.Boundarylayer transientsdo not exist for such

cases;in fact therearefastoscillationsthatdonotdie out.Theadditionof anartificial costtermin

formulationof theproblemis suggestedasanad-hocway to circumventthis difficulty. By proper
choiceof the weighting on canguaranteetheproperstructureof the linearizedboundarylayer

system_.

An interestingfeatureof the constrained boundary layer system described above is the presence

of a finite costate rate at the juncture with the reduced solution. This behavior is illustrated in the

sketch presented as Figure 1. In the figure, tl denotes the time at which an unconstrained arc joins

a constrained arc (i.e. a juncture point).
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Figure 1 Illustration of finite costate rate at juncture between boundary layer and reduced
solution trajectories.

Identification of the behavior illustrated in Figure 1 is based on the following construction.

_HBL

_y

U_--U *

$_<o

_HBL

3y

0

Ou*

+/u* _yy

U = coIlstant

S_<O

= _'y (A.12)

Note that, since the last term in (A.12) is zero, this relation is equal to the negative of the costate

rate. The following relation can also be constructed.
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OHBL

_y

U=U*

S_<O

_S
+ _'s--

_y

U=U*

unconstrained

(A.13)

Now as x tends to tl- we find that,

u = constant
unconstrained

w

I

=- XSo 3S/3y [

Xs = 0 for z < tl

/-I _Y I

t1" 0

0

at h + this becomes _-So

(A.14)

Thus the fast costate rate, Ly', has a finite value at h- and then jumps to zero at tl +. The boundary

layer system no longer approaches the reduced solution asymptotically as in the unconstrained

case. Instead, a finite time boundary layer is implied. Similar finite time boundary layer

phenomenon have been discovered by the investigators of interior boundary layers and boundary

layers that approach singular arcs 45,46. Using this terminal value for the costate rate it is possible

to show analytically for problems of interest that the linearized boundary layer system will always

have purely imaginary roots when the reduced solution lies on the state-variable inequality

constraint boundary.

Consider the possibility of integrating the boundary system backwards in time from the reduced

solution using the finite terminal value of costate rate to get started. Note that only a single extremal

will be generated unless an additional free parameter is introduced into the problem. Since it should

be possible to reach any set of initial conditions that do not violate the constraint, such a parameter

surely exists. The only available parameter appears to be the magnitude of the possible costate

jump at the juncture. This would imply that the costate history willb e discontinuous at the juncture

for all initial conditions that do not lie on the single extremai generated when it is assumed no jump

OCCurS.

44



Assuming that first order necessary conditions for optimality can be obtained for which the

requirement for smoothness can be relaxed (see for instance reference 47), one would again

require a scheme for obtaining a stabilizing estimate of the unknown costates that appear in the

optimal control law. However, to the author's knowledge, no directly applicable stability theory

for finite time phenomenon is available for completing this task nS. Alternately, one can consider

transforming the constrained problem into an unconstrained problem, generally of higher order.

The optimal trajectory of the transformed problem exhibits singular arcs which correspond, in the

original constrained problem, to arcs which lie on the constraint boundary 3°. Because of this, the

technique for costate approximation using the linearized boundary layer system, will fail. The

reader is referred to the literature for a description of the work that has been done with regard to

understanding control of singularly perturbed systems that include singular arcs 46.

IV. Examples

Several simple examples are now presented which illustrates the application of the Valentine

transformation technique described in reference 46 without the penalty of increased system

order 31. The phenomena of a finite time boundary layer is illustrated in example 2.

Example 1

Consider the following singularly perturbed dynamical system with initial conditions at zero.

2
x 1 = x 2 - u xl(0) = 0 (A.15)

e :_2= x 3 x2(0) = 0 (A.16)

e x3 = u x3(0) = 0 (A. 17)

The following 2 nd order (i.e. p = 2) state inequality constraint is to.be enforced,

S =x 2- 1 <0

The final value of x 1 is specified, the final time is free, and the performance inc_ex is given by,

(A.18)
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J = dt (A. 19)

Using Valentine's device, the inequality constraint (A. 18) is converted into an equality by the

introduction of a "slack variable," o_3°.

S + ot2/2 = 0 (A.20)

Differentiating (A. 18) p times (p = 2) with respect to time, the following set of equations is

obtained,

X3/E + 0_O_I/E = 0 where ¢ da/dt ---al (A.21)

U/E 2 + 0_12/E 2 + 0_0_2/E 2 = 0 where e dc_]/dt - a2 (A.22)

Using the transformations x2 = 1 - a2/2, x3 = aal, and u = -o_12 - 0_0_2, (A. 15-17) become,

2 2

2 a l + aa (A.23)

Ea = a I (A.24)

E_ 1 -- 0_2 (A.25)

Reduced solution. By setting e to zero, (A.24) and (A.25) are reduced to the following,

O

Otl=O (A.26)

The reduced solution Hamiltonian is given by,

(A.27)
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[ 2( }1H=_. x 1 a 22 al + 0ta2 + _'a0_l + _'ot_2 + 1 = 0
(A.28)

Evaluation of first order necessary conditions for optimality results in the following,

O O

H=0 & H a = 0 =:_ _'x =-1, a = 0 (A.29)

O

Hal = 0 _ _'ct = -1 (A.30)

O

Hot 2 = 0 _ _'al = -1 (A.31)

Boundary Layer Problem. Introducing the time scale transformation "_= t/e and again setting e

to zero, the boundary layer dynamics are given by

i

a = a 1 (A.32)

a I = a2 (A.33)

where the prime notation denotes differentiation with respect to the stretched time x. The boundary

layer Hamiltonian is given by,

2 2

HBL = _ + a l+0_a 2 + _.aal + _.a_2 = 0
(A.34)

The costate dynamics are given by

(A.35)
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Lal=- a l+aa o_1 - ka (A.36)

And when the constraint is inactive, the control, t_2, is determined by the necessary condition,

(2C)HBL -- 2 ct 1 + aa a + _.a_ = 0

Oot 2

(A.37)

Note that when the constraint is active, a is zero and the condition (A.37) yields no direct control

solution. Riding the constraint boundary corresponds to a singular arc in the transformed problem.

Example 2

Consider a simplification of Example 1, namely the singularly perturbed dynamical system,

2
X 1 = X 2 - U (A.38)

e x 2 = u (A.39)

The inequality constraint (A. 18) becomes a 1st order (i.e. p = 1) state inequality constraint,

S = x 2 - 1 < 0 (A.40)

The final value of x 1 is again specified, the final time is free, and the performance index is again

given by,

f0 tfJ = dt (A.41)

Using Valentine's device, the inequality constraint (A.40) is converted into an equality by the

introduction of a "slack variable," ct30.

S + o_2/2 = 0 (A.42)
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Differentiating(A.42)p times(p= 1)with respectto time,thefollowing equationis obtained,

U/E+ 0_0_I/E = 0 where _ da/dt - _Xl (A.43)

Using the transformations x2 = 1 - a2/2.and u = - ¢_o_1, (A.38-39) become,

2

x 1 = 1 0_ (a_l) 2 "" (A.44)
2

£o_ = a 1 (A.45)

Reduced solution. By setting e to zero, (A.45) is reduced to the following,

O

a x = 0 (A.46)

The reduced solution Hamiltonian is given by,

I 2( )t1 a
H=kxl 2 a°tl + 7Lcx°tl + 1 = 0

(A.47)

Evaluation of first order necessary conditions for optimality results in the following,

0 0

H=0 & H a = 0 =_ _'x = -1, a = 0 (A.48)

O

H=2= 0 =* ka = 0 (A.49)

from which it is evident that

xl(t ) = t (A.50)
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x_(t) = 1 (A.51)

Boundary Layer Problem. Introducingthetime scaletransformationx = t/e and again setting e

to zero, the boundary layer dynamics are given by

!

(x = (x I (A.52)

where the prime notation denotes differentiation with respect to the stretched time x. The boundary

layer Hamiltonian is given by,

HBL= _ + CtO_I + _,_0_ 1 = 0 (A.53)

The costate dynamics are given by

(2o )_.ct = -(x i+ (A.54)

The condition that the partial derivative of the Hamiltonian with respect to the control be zero yields

the following result,

Hal = 0 _ Ctl = ------_ (A.55)
2(x

Substituting this result back into the condition that the Hamiltonian be zero, the following result is

obtained.

2

H = 0 _ ka = + _- (x (A.56)

Substituting (64) into (63) we find that the optimal value of the control, (xl, is constant; namely,

, (A.57)
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With thisresultit is possibleto integrateequation(A.52) to obtain,

o_(x)= _ + -_ (A.58)

When the boundary layer trajectory reaches the constraint boundary (i.e. xa = 1), ct = 0 and the

expression (A.58) yields a finite final time of 2 units of boundary layer time. Transforming back,

we obtain an expression for u in terms of xa,

u*- _ 1 - x a (A.59)

where integration of the original differential equation (A.39) yields,

x2=1- (1-2) 2 (A.58)

V. Conclusions

In conclusion, state-variable inequality constrained singularly perturbed problems can exhibit

complex boundary layer phenomenon that are not well understood. The order of the state constraint

can increase when going from the full order problem to a boundary layer analysis. Because

discontinuous costate histories can be introduced by the presence of state inequality constraints, a

direct application of available singular perturbation theory, which requires the state and costate

histories to be smooth, is not possible. The boundary layer phenomenon associated with such

problems appear to be finite time. A stability theory for finite time phenomenon, as required to

construct a suitable approximation for costates appearing in derived feedback control laws, is not

available at this time. Valentine's transformation can be used to overcome some of these

difficulties, but at the expense of introducing singular arcs and possibly increased system order.
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Appendix B

Permormance Modeling of Hypersonic Vehicles

I. Introduction

In order to carry out useful performance studies, trajectory optimization and guidance law

development for hypersonic transatmospheric vehicles, it is necessary to utilize an accurate

model of the aerodynamics and propulsion system characteristics. Since actual vehicle design

is not involved, it is appropriate to utilize simplified models if they can be made to properly

reflect the actual vehicle performance characteristics. It is also of great benefit to have

available models that can be used interactively to study the impact of small changes in vehicle

configuration or propulsion system design.

In what follows is described a set of simple algorithms devised for use in the present

research program for the purposes outlined. The computer codes have evolved continuously

throughout the study. The result is an integrated hypersonic vehicle performance package that

has many applications beyond those originally envisioned.

H. Hypersonic Aerodynamic Performance Modeling

Simple hypersonic aerodynamic theory enables construction of practical and highly accu-

rate representations of the performance characteristics of realistic hypersonic flight vehicles.

In this section we review the basic theoretical approach and the implementation of this theory

in the form of interactive computer software. The basic approach was to make the application

of the model to a particular airframe conceptual design as simple as possible. Because of the

interactive nature of the algorithms used, effects of even minor design modifications can be

immediately assessed in terms of sensitivity parameters such as L/D ratio, overall vehicle drag

coefficient, and trim moments.

The models developed have applications that range considerably beyond the ones ad-

dressed in this report. For example, they are a sufficiently accurate representation of the

vehicle performance to allow assessment of off-design flight conditions as well as approximate

stability and control studies. Although the emphasis in the following discussion is on the high-

Mach number performance modeling, the computer program under development is being set

up to cover the entire Mach number range from low subsonic to hypersonic speeds. The low

speed aerodynamic performance models used are not as accurate as those in the hypersonic
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range,butaresufficiently precisefor usein simpleperformancemodelingin which low speed
flight affectssuchasthelandingor takeoffflight phasesareto be included.

In what follows is givena brief descriptionof theoperation of the computer program and

the basic theory on which it is based. The methods used in applying the theory to a given

vehicle configuration is reviewed for the benefit of readers unfamiliar with hypersonic aerody-

namic modeling.

User Interface

The computer algorithms were designed to make their application to a given vehicle con-

figuration as simple as possible. At present, limited access to actual flight vehicle configura-

tions makes it necessary to work from rather sparse data sets. For example, the vehicle to be

studied may be def'med only by a simple three-view drawing. We have deliberately set out to

make it possible to work effectively from such data. The configuration is entered into the

program in a variety of ways. The simplest method allows input in the form of outlines of the

wing planform, fuselage elevation and planform, body cross-section shapes, and tail surface

configuration in the form of discrete points. It is not necessary that a large number of outline

points be used. For example fuselage outline data can consist of as few as ten points in

elevation and planform with acceptable accuracy. The program allows for variation in

fuselage cross-section station by station along the axis of symmetry. It also allows for comers

in the cross-section as often chosen in hypersonic vehicle layouts.

The configuration data can also be entered by scanning a three-view of the vehicle. Scaling

is accomplished by selecting points at the nose and tail of the planform. The user then selects

points interactively by means of a mouse or graphics table. Modifications in geometry can be

directly implemented in the input process by altering position of control points. Wing and tail

incidence, fin cant, control surface deflection, and other required information are entered in an

interactive tabular input window. If insufficient data has been entered to properly define the

complete configuration, the program warns the operator and indicates what additional informa-

tion must be specified.

Interactive Program Mode

The computer program has been designed to take full advantage of modem computer

graphical interface technology. Once a vehicle configuration has been implemented as

described earlier, its attributes can be saved and modified later. At the discretion of the user,

one or more attributes of the vehicle aerodynamic performance characteristics can be displayed

simultaneously with the configuration input pane !. For example, the lift coefficient vs angle of

attack, lift/drag ratio, pitching moment vs lift coefficient or other information can be viewed at

the same time changes in vehicle geometry such as wing area, incidence angle, airfoil shape, or
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bodycross-secti0nshapearebeinginput. This makesit veryeasyto determinetheimpactof
designchangesin adirectandgraphicallyusefulmanner.Whentheprogramis linked to one
of the post'processingpackagessuchastheone describingtrajectoryoptimization discussed
elsewherein thereport, it is possibleto view effectsof configurationmodificationsdirectly in
termsof their impacton selectedperformanceparameters.

Local Surface Inclination Theory with Blast Wave Corrections

Several decades of experience have shown that the simplest form of hypersonic flow field

modeling yields a practical and accurate means for estimating vehicle performance. The

Newtonian flow model gives an excellent representation for the pressure changes on the

vehicle surfaces directly in terms of the inclination of the local surface to the freestream flow.

Various modifications can also be applied to correct the pressure distribution for effects of

strong shock formations at the leading edges of lifting surfaces and tall surfaces and on the

nose of thefuselage. The blast wave theory is employed for this purpose.

Simple Newtonian impact theory shows that the pressure coefficient at any point on the

windward vehicle surface is given by

Cp = 2 sin 2 0 (B. 1)

Thus all that is necessary to apply it to a three dimensional vehicle is to set up an algorithm that

utilizes geometry information to determine whether a given element of the surface is on the

windward side and to calculate the angle between the freestream velocity vector and the

surface element. Samples of the computational method used in this program are discussed

briefly in the following subsections.

Hypersonic Thin Airfoil Theory

In some situations, it is sufficiently accurate to represent hypersonic lifting surfaces as flat

plates. However, in practical situations the need for adequate low-speed aerodynamic charac-

teristics and surface structure dictates that a cambered airfoil of reasonable thickness be used.

For example, the NASA vehicle designs used in our computations typically employed airfoils

of of between 5 and 10% maximum thickness ratio. Thus it is useful to provide means for

correcting the force calculations for camber and thickness effects. Figure B.I defines the

required geometry for a typical wing section.

On the windward side of the airfoil, the camber/thickness function is conveniently de-

scribed as a functional relationship

Yt = F(x) (B.2)
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yt = F(x)
x

Figure B.1..Hypersonic Airfoil

This can be input in the computer program as a series of points taken from a scan of the airfoil

or by inputing in tabular form. The program also allows the specification of the airfoil profile

directly in analytical form. The program logic then determines the required calculation module

from which to compute the wing characteristics. The program also contains provision for

accounting for wing twist, although none of the vehicle models studied have employed twist.

The local value of the pressure coefficient becomes

Cp= 2sin2(t_ + t- _) (B.3)

where a is the vehicle angle of attack measured between the fuselage reference plane (See

Figure B.2), t is the incidence angle between the wing chord line and the fuselage reference

plane, and F is the airfoil envelope shape function as described above. This information is then

used as the basis for determining the normal force coefficient for the airfoil. The result is

c n = sin 2 ot + t - dx (B.4)
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Body Reference Plane

s x _ X

Figure B.2. Definition of Fuselage Reference Plane

and from this we find the section lift and drag coefficients.

2coso_ c dF
2sina Csin2C _)Cd= F t_+t dx

c J0 \

03.5)

(B.6)

These coefficients are then used with the wing planform information giving the local values of

chord length and incidence (for a twisted wing) to determine the force on the local wing

section. The results for the entire wing are then accumulated. The program has provision for

displaying the total lift and drag coefficients and the center of pressure location for the three-

dimensional wing. It also determines contributions to the pitch, yaw, and roll moment

coefficients.

Aileron, elevon or flaperon deflection effects are also computed. The user must input the

desired control surface deflections. Differential elevon deflections axe allowed. The program

senses when the ca-itical surface deflection angle (at which the freestream flow no longer

impinges on the deflected surface) has been exceeded and properly adjusts the force system.
. L .
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Hypersonic Lifting Body Theory

The integrated fuselage/propulsion system provides most of the lift of a typical hypersonic

aircraft. Since the shapes may be somewhat complex, it is necessary to provide for an adequate

geometrical representation. Figure B.2 shows the coordinate system used and defines the

vehicle reference plane. This plane typically coincides with the body centerline as seen in the

elevation drawing, but the program allows for arbitrary specification of this plane. For

convenience, the origin of the coordinate system is located at the vehicle nose. The x-axis lies

along the reference plane in the (assumed) normal plane of symmetry. The y-axis points to the

left and the z-axis points downward.

Figure B.3 shows how the various profile curves defining the body shape are represented in the

program. These curves may be determined by curve fitting of three-view drawings or may be

input into the program as a table of points. It is not necessary to utilize a large number of

points. Ten points per profile curve usually provide adequate accuracy unless the body shapes

are exceptionally complex.

As shown in Figure B.3, the body cross-section profiles are not required to be continuous

curves. Comers are allowed as represented by the break points shown in the drawings. The

fuselage shape is specified in functional form as

i = f(y) Cross Section Shape
= g(x) Planform Shape (B.7)

h(x) Fuselage Elevation

These functions are determined in the program from the input coordinate points and are used to

compute the unit vector normal to a point on the windward surface. The result is

n = sin _1 i + sin (_2J + (cos (_1cos 02)k (B.8)

where

01on
(_2 = _'_yy) (B.10)

An area element of the body surface at the same location can be written as

A
dS= dy

cos01 cos_2
(B.II)
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Figure B.3. Definition of Body Shape Functions
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The projectedwidth of theelementin thereferenceplaneis A asshownin FigureB.3. The
inclinationanglebetweenthefreestreamvelocity vectorandthesurfaceelementis givenby

_- = cos-l(U**" n/__x
Lu..J 2

where the velocity vector is specified in body coordinates as

(B.12)

U** = U,,.[(cos_ cOsa)i-(sinl3)j " (cosl3 sina)k] (B.13)

The local pressure coefficient is

Cp = 2 sin2[v]

The dimensionless normal force vector on the surface element is, in vector form

03.14)

dF = -2 sin2[v] dS n (B. 15)

Integration of this function across the width of the body gives the force vector on an axial

element of the vehicle. The program then sums all contributions axially to determine the lift,

drag, sideforce, and moment coefficients for the complete assembly.

The more detailed representation of the body geometry used in the present version of the

program greatly improves the agreement between the predicted and measured aerodynamic

performance. Earlier problems with the vehicle lift curve slope at zero angle of attack fiave

been eliminated because the effects of body curvature and surface orientation are now properly

accommodated in the calculations.

HI. Scram jet Propulsion Model

Although the supersonic combustion ramjet concept has been known for over two decades,

the lack of appropriate unclassified experimental data, cycle analyses, and combustion analy-

ses requires that we use a simple conceptual model for the purposes of vehicle trajectory opti-

mization. In what follows is a brief description of this model andthe philosophy behind it.

Conceptually, the SCRAMJET is as simpl e an airbreathing combustl,'on device as one

could imagine. In the case of the new family of flight vehicles to use this propulsion concept,
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theentireundersideof thevehicleplaysarole in theoperationof thesystem.Figure 1 shows
thebasicconfiguration. Mechanically,thedevicecanbethoughtof in termsof threeelements.
Theseare

1. Diffuser
2. Combustor

3. Expansionnozzle

Hypersonicvehicle designersattemptto utilize the forward fuselage,strakes,and wings to
provide themajority of thediffusion. Thelower partof thethree-dimensionaloblique shock
formedatthe leadingedgesis tailoredto theshapeof thecombustorinlet sothat air entersat
approximatelyaMachnumberof theorderof 3dependingon theflight speed.Combustionof
hydrogenfuel takesplacein theduct at supersonicspeedsin orderto minimize energylosses
dueto dissociation,whichwouldbeenormousif themoreconventionalsubsonicramjetcycle
wereto beusedin high speedflight. Liquid hydrogenis thefuel of choicenotonly becauseof
its high energycontent,butbecauseit canbemadeto burnin a supersonicflow duetoits wide
flammability limits and high flame speed. Finally, the combustionproductsareexpanded
throughanozzle,which, like thediffuser isdesignedinto thecontourof the lower fuselage.

Thepropulsionsystemis mostlydiffuserandnozzle. While theseelementsarefairly easy
to model from the thermodynamiccyclepoint of view, theaerodynamicsarequitecomplex,
giving rise to achallengingdesignproblem. Computationalfluid dynamics(CFD) numerical
techniquesarebeingrelieduponin conjunctionwith anewfamily of hypersonictestfacilities
to yield practical designsolutions. Unfortunately, information on the current researchis
classified,sothatrealisticdesigndatais notavailablefor projectsof thetypereportedhere.

Thecomputationalmodelusedhereto representthe SCRAMJETpropulsionsystemwas
deliberatelydesignedto bereadilyupdatedasnewinformationbecomesavailable. It directly
accessesastandardatmospheremodel (alsoeasilyadjustableto providenon-standardoperat-
ing conditions),whichsimplifiesits incorporationinto atrajectoryoptimizationprogram.The
diffuserandnozzleperformanceisdeterminedeitherwith standardthermodynamicmodelsor
by meansof optimal designcurve fits suchasthoseproposedby Billig. Sinceinformation
concerningrecentprogressin supersoniccombustionwasnot available,a simplecombustor
model was incorporated. This is a straightforwardRayleigh line calculation. An iterative
schemeis usedto determinethenozzleentranceMach number,by maintainingthemixture
ratio at or below the stoichiometricvalue.No detailedcombustioncalculationswith multi-

speciesgasesis attemptedin thepresentversionof themodelalthoughthesecould bereadily
incorporatedas a more definitive model of practical SCRAMJETcombustioncomesinto
focus.

i
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The propulsivedrag estimateof Billig was incorporated to account in a simple way for

some of the frictional losses. No attempt was made to incorporate vehicle integration effects in

an interactive fashion. Experience with the aerodynamic simulation shows that very small

vehicle attitude changes take place during equilibrium flight. Therefore in the present state of

development, no vehicle attitude dependence has been included in the propulsion model. The

flexibility of the algorithm will make-such additions quite easy to incorporate as the need for

them is established.
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